p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C42⋊6C22, C22.29C24, C24.16C22, C23.11C23, C2.42+ 1+4, (C2×C4)⋊4D4, C4⋊D4⋊6C2, C4⋊1D4⋊5C2, C4.15(C2×D4), C22≀C2⋊3C2, C4⋊C4⋊14C22, C4.4D4⋊6C2, (C22×D4)⋊7C2, (C2×D4)⋊3C22, C22⋊C4⋊4C22, (C2×C4).17C23, (C22×C4)⋊8C22, (C2×Q8)⋊11C22, C22.21(C2×D4), C2.14(C22×D4), C42⋊C2⋊10C2, (C2×C4○D4)⋊4C2, SmallGroup(64,216)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.29C24
G = < a,b,c,d,e,f | a2=b2=c2=e2=f2=1, d2=a, ab=ba, dcd-1=fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ece=bc=cb, bd=db, be=eb, bf=fb, df=fd, ef=fe >
Subgroups: 305 in 167 conjugacy classes, 81 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4⋊1D4, C22×D4, C2×C4○D4, C22.29C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C22.29C24
Character table of C22.29C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 12)(2 9)(3 10)(4 11)(5 14)(6 15)(7 16)(8 13)
(1 5)(2 8)(3 7)(4 6)(9 13)(10 16)(11 15)(12 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 9)(2 12)(3 11)(4 10)(5 8)(6 7)(13 14)(15 16)
(1 12)(2 9)(3 10)(4 11)(5 16)(6 13)(7 14)(8 15)
G:=sub<Sym(16)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,12)(2,9)(3,10)(4,11)(5,14)(6,15)(7,16)(8,13), (1,5)(2,8)(3,7)(4,6)(9,13)(10,16)(11,15)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9)(2,12)(3,11)(4,10)(5,8)(6,7)(13,14)(15,16), (1,12)(2,9)(3,10)(4,11)(5,16)(6,13)(7,14)(8,15)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,12)(2,9)(3,10)(4,11)(5,14)(6,15)(7,16)(8,13), (1,5)(2,8)(3,7)(4,6)(9,13)(10,16)(11,15)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9)(2,12)(3,11)(4,10)(5,8)(6,7)(13,14)(15,16), (1,12)(2,9)(3,10)(4,11)(5,16)(6,13)(7,14)(8,15) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,12),(2,9),(3,10),(4,11),(5,14),(6,15),(7,16),(8,13)], [(1,5),(2,8),(3,7),(4,6),(9,13),(10,16),(11,15),(12,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,9),(2,12),(3,11),(4,10),(5,8),(6,7),(13,14),(15,16)], [(1,12),(2,9),(3,10),(4,11),(5,16),(6,13),(7,14),(8,15)]])
G:=TransitiveGroup(16,73);
C22.29C24 is a maximal subgroup of
(C2×C8)⋊4D4 M4(2)⋊21D4 M4(2)⋊5D4 C2≀C4⋊C2 C4.4D4⋊C4 C4⋊1D4.C4 C4○D4⋊D4 (C2×Q8)⋊16D4 C42.12C23 C23.9C24 C42.14C23 C42.16C23 C42.18C23 (C2×C8)⋊11D4 (C2×D4).301D4 C42.366C23 C22.38C25 C22.73C25 C22.76C25 C22.77C25 C22.83C25 C22.87C25 C22.89C25 C22.99C25 C42⋊C23 C22.122C25
C24.D2p: C42⋊D4 C42⋊9D4 C42⋊10D4 M4(2)⋊6D4 C24.39D4 M4(2)⋊C23 C24.45D6 C24.52D6 ...
C2p.2+ 1+4: C4.2+ 1+4 C4.142+ 1+4 C4.152+ 1+4 C42.406C23 C42.408C23 C42.410C23 C22.49C25 C22.95C25 ...
C8⋊pD4⋊C2: (C2×C8)⋊12D4 M4(2)⋊16D4 M4(2)⋊10D4 M4(2)⋊11D4 ...
C22.29C24 is a maximal quotient of
C23.191C24 C24.542C23 C23.199C24 C23.203C24 C42.160D4 C23.304C24 C23.308C24 C23.311C24 C24.249C23 C24.263C23 C23.333C24 C23.335C24 C23.382C24 C24.300C23 C23.400C24 C23.402C24 C23.404C24 C42.171D4 C42.173D4 C42.175D4 C42.176D4 C42.178D4 C24⋊9D4 C24.360C23 C24⋊10D4 C24.589C23 C23.524C24 C24⋊5Q8 C42.187D4 C42.189D4 C42.190D4 C23.535C24 C42.193D4 C42.194D4 C42⋊10Q8 C24.377C23 C23.569C24 C23.570C24 C23.573C24 C23.576C24 C23.578C24 C23.585C24 C23.592C24 C24.403C23 C23.603C24 C23.606C24 C24.412C23 C23.611C24 C24.413C23 C23.618C24 C23.620C24 C24.418C23 C24.459C23 C23.715C24 C23.716C24 C42.199D4 C42.200D4
C42⋊D2p: C42⋊13D4 C42⋊14D4 C42⋊17D4 C42⋊20D4 C42⋊21D4 C42⋊22D4 C42⋊24D4 C42⋊26D4 ...
C2p.2+ 1+4: C42.263D4 C42.264D4 C42.265D4 C42.266D4 C42.267D4 C42.268D4 C42.269D4 C42.270D4 ...
Matrix representation of C22.29C24 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | -2 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 1 |
0 | 0 | 0 | 1 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | -1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | 1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-2,1,1,-1,0,0,0,1,0,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,-1,0,0,0,2,-1,-1,1,0,0,0,0,0,-1,0,0,0,0,1,0],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,-2,1,1,-1,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;
C22.29C24 in GAP, Magma, Sage, TeX
C_2^2._{29}C_2^4
% in TeX
G:=Group("C2^2.29C2^4");
// GroupNames label
G:=SmallGroup(64,216);
// by ID
G=gap.SmallGroup(64,216);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,217,103,650,188,579]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=e^2=f^2=1,d^2=a,a*b=b*a,d*c*d^-1=f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*f=f*d,e*f=f*e>;
// generators/relations
Export